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Abstract. The nuclear equation in the Born–Oppenheimer scheme for electron–ion bound states is
solved by a method that ensures that the nuclear part compensates for the geometrical (Berry) phase
in the electronic part and that the total wave-function is single valued. The compensation occurs in
a manner that keeps the energy of the state continuous even across a ‘topological transition’, i.e. for
a change of parameters that removes the electronic degeneracy. The method ties the phase to the
behaviour of the nuclear part near the conical intersection of potential surfaces. The consistency
of the method is illustrated byGedankenexperimentsin a non-symmetric Jahn–Teller situation and
a spin–orbit coupled doublet.

1. Introduction

Though the geometric or Berry phase is one of the most easily describable and demonstrable
findings of modern physics, there are still some mystifying features in it [1–4]. In this note we
shall limit our attention to quantal, molecular manifestations of the phase, with time reversal
symmetry [5] (rather than classical or magnetically induced ones [6, 7]). Moreover, we shall
dwell on the archetypal model,E ⊗ ε (the doubly degenerate electronic state interacting
with a twofold vibrational mode), which gives rise to a conical intersection between adiabatic
potential energy surfaces [8–12].

From the beginning, the role of degeneracies was regarded as essential (and even
mandatory) for the existence of non-zero geometric phases (e.g. in section 3 of [1]). (In the
discussion section we shall touch on the question of degeneracies for extended systems. This
addresses the more recent discoveries of the phase in the electronic band-structure [13], in
macroscopic polarization in solids [14–16].) Originally, in a molecular context, Longuet-
Higgins [17] (and later Stone [18]) tied the multi-valuedness of an electronic wave function
to the existence of degeneracy in the parameter space that is encircled by the system before it
returns to its starting configuration.

However, the electronic wave-function is only one part of the quantal state of the material
system. The other is the nuclear wave-function. This, or better its combination with the
electronic part, has been the subject of numerous studies, both in solid state physics and
molecular gas dynamics, especially with reference to the different procedures (adiabatic, non-
adiabatic etc) used for disentangling the electronic from the nuclear motion [8, 19, 20]. In
these, recent studies (which form the stepping board for the present work) it was found that in
cases where an electronic degeneracy was involved, the choice of the procedures had immediate
consequences in the calculation of molecular scattering cross-sections [21–24].
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In previous studies in the literature it was made clear that the possibility of many-
valuedness existed only for the electronic part (e.g. [9]). On the other hand, the full wave-
function (including all dynamical variables: those of the electrons and of the nuclei) had to be
single valued in space, this requirement being fundamental in quantum mechanics, on which
many quantization rules hinge (at the very least in a singly connected space, such that the
particles have access to all points of the space). This means that the multi-valuedness of the
electronic part has to compensated by a similar multi-valuedness of the nuclear part. The latter
is usually achieved by taking a non-integral value of the angular momentum associated with
the nuclear vibrational motion [9, 12].

One of the issues which will be addressed is how the single valuedness of the total wave-
function is maintained as the location of the electronic degeneracy becomes displaced outside
the closed trajectory of the nuclear motion. Then the nuclear part is also single valued, which
would, by the foregoing considerations, require an integral angular momentum. But a finite
change (e.g. from half-integral to integral value) in the angular momentum implies a finite
change in the energy of the system. If we now go continuously from a degenerate situation
to an infinitesimally close, non-degenerate situation, we reach the absurd conclusion that an
infinitesimal cause (with almost no energy expenditure) engenders a finite energy change. We
recall that in a magnetically induced Aharonov–Bohm effect the energy balance was shown
to be ensured by the torque working on electrons [25]; in the molecular situation no similar
compensation mechanism appears possible. The removal of degeneracy (named ‘topological
transition’) was previously considered for the electronic part only [26].

In the next section we write out the nuclear equation [8, 19] and, applying a transformation
introduced and used earlier [12, 27], we show that the energy of the system is (nearly)
unchanged in a minute displacement of the degeneracy and that the single valuedness of
the total wave function is ensured by the continuous variation of the phase.

2. The nuclear equations

As in earlier works [12, 28] we denote the pair of electronic and nuclear components,
respectively, byζ1(r; q), ζ2(r; q) and byχ1(q), χ2(q) with r andq being the coordinates for
electronic and (small amplitude) nuclear motions. (Several nuclear coordinates are implied by
the (bold type) vector notation.) The total wave function is then

ψ(r; q) =
∑
i=1,2

χi(q)ζi(r; q) (1)

in which the electronic parts are solutions of the equations

Helζi(r; q) = Vi(q)ζi(r; q) (i = 1, 2). (2)

The electronic HamiltonianHel is a 2× 2 matrix operator, depending parametrically on the
nuclear coordinates. TheV are adiabatic potential surfaces.

The nuclear equations are coupled differential equations forχ1 andχ2 involving the nuclear
massM, coordinatesq and the conjugate derivative operators∇(h̄ = 1). For their derivation
and general form we refer to [8, 19, 27]

[−(2M)−1(∇2 + τ (2)11 ) + V1− E]χ1− (M)−1τ
(1)
12 ∇χ2 − (2M)−1τ

(2)
12 χ2 = 0 (3)

[−(2M)−1(∇2 + τ (2)22 ) + V2 − E]χ2 − (M)−1τ
(1)
21 ∇χ1− (2M)−1τ

(2)
21 χ1 = 0 (4)

where

τ
(1)
12 = −τ (1)∗21 = 〈ζ1|∇|ζ2〉 = −ρ2τ

(1)
21 (5)

τ
(2)
12 = −τ (2)∗21 = 〈ζ1|∇2|ζ2〉 = −ρ2τ

(2)
21 (6)

τ
(2)
11 = 〈ζ1|∇2|ζ1〉 = τ (2)22 .
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The phase factorρ ensures ‘parallel transport’ and is 1 for real electronic functions, but is
complex for certain complex ones, such that it cannot be made real by a gauge transformation,
as will be given in section 3.2. The asterisk denotes complex conjugation.

To solve (3) and (4) we set first

χ = χ1 + iρχ2. (7)

(A second solution is obtained by changing i to−i.) By adding up equation (3) and iρ times
equation (4) we derive

{−∇2 − i(ρ)−1τ
(1)
12 ∇ − i(ρ)−1τ

(2)
12 − τ (2)11 − w}χ + δ = 0 (8)

where

w = 2M(E − V1).

The last term given by

δ = 2M i(V2 − V1)χ2 (9)

is small near the degeneracy, whereV2 = V1. Now, we expect that the topological properties
of the solution (e.g. its multivaluedness) are determined near the singularity [17]. Therefore,
following [12, 27, 28], we temporarily proceed withoutδ. Next we assume a WKB type
solution, of the form

χ = exp

(
i
∫
0

Q(q) · dq
)

(10)

where the integration is along a path0 connecting the initial and final points in the nuclear
coordinate space. We now substitute equation (10) into equation (8), neglect in the spirit of
WKB derivatives ofQ and obtain

Q2 + 2(ρ)−1τ
(1)
12 Q− (ρ)−1τ

(2)
12 − τ (2)11 − w = 0. (11)

The solutions to this equation are

Q = −τ (1)12 ±
√

[((ρ)−1τ
(1)
12 )

2 + (ρ)−1τ
(2)
12 + τ (2)11 +w]. (12)

This is a general result, valid semiclassically, whose quantum mechanical interpretation is that
the exponential in (10) has to be summed for all paths (in the manner of path integrals). The
presence of the potentialV1 in w will cause classically likely paths to be weighted strongly
and to add up constructively.

3. Applications

We shall now examine the solution in the previous section for two cases, in which the nuclear
motion (not necessarily cyclic) is confined to a circle in a plane. The nuclear coordinatesq1,
q2 are then naturally written as(q, φ) where

q1 = q cosφ q2 = q sinφ.

3.1. A shifted Jahn–Teller system

The electronic Hamiltonian is an asymmetric modification of the linear Jahn–Teller caseE⊗e
[8, 10], and is shown below in a traditional form:

H1 = Evib
[−(kq cosφ − α) kq sinφ − β

kq sinφ − β kq cosφ − α
]

(13)
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(Evib is a an energetic measure of the cohesion between the nuclei.k is a dimensionless
electron–vibration coupling constant.q is also dimensionless.) The separation between the
pair of adiabatic potentials arising fromH1 is in units ofEvib

2V1(φ, q) = 2|k|√[(q cosφ − a)2 + (q sinφ − b)2] (14)

where

a = α/|k| b = β/|k| and (for future use)η ≡ tan−1(α/β). (15)

States:

ζ1(r; q, φ) =
{

[|k|(q cosφ − a) + V1]

(
1
0

)
+ [|k|(q sinφ − b)]

(
0
1

)}
×{[|k|(q cosφ − a) + V1]2 + [|k|(q sinφ − b)]2}−1/2

ζ2(r; q, φ) =
{
− [|k|(q sinφ − b)]

(
1
0

)
+ [|k|(q cosφ − a) + V1]

(
0
1

)}
×{[|k|(q cosφ − a) + V1]2 + [|k|(q sinφ − b)]2}−1/2.

The condition for a degeneracy to lie inside the circleq = constant is that
√
(α2 + β2) < |kq| (16a)

or, by virtue of (15)
√
(a2 + b2) < q (16b)

and then the point of degeneracy (conical intersection) is atφ = η(≡ tan−1(b/a))

q = √(α2 + β2)/|k| (or
√
(a2 + b2) = q). (17)

This result exemplifies the statement that conical degeneracies are not necessarily due to
symmetry [17].

We now add toH1 a (diagonal) guiding potential that confines the nuclear motion to a
circular pathq = q0. (Guiding potentials appear in many situations; e.g. in the Aharonov–
Bohm effect [7].) Then the only remaining nuclear coordinate isq0φ and the derivative∇ in
the previous section is simply(∂/∂φ)/q0. Evaluating the quantities (5) and (6) from the states
ζ1 andζ2 shown above, we find

ρ = 1

(since the electronic states are real) and

τ
(1)
12 = 〈ζ1(r; q0, φ)|∂/∂φ|ζ2(r; q0, φ)〉/q0 = {1− [(a2 + b2)− q0

√
(a2 + b2) cos(φ − η)]

/[q2
0 + a2 + b2 − 2q0

√
(a2 + b2) cos(φ − η)]}/2q0. (18)

and moreover, it is shown in [19] and [20] that

τ
(2)
12 = τ ′12 (19)

and

τ
(2)
11 = [τ (1)12 ]2 (20)

where

τ ′12 = (1/q0)∂/∂φ(τ
(1)
12 ). (21)

We substitute these results in equation (12) to obtain a simpler expression

Q = −τ (1)12 ±
√
(τ ′12 +w). (22)
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Since we wish to see what happens to the wave-function as the degeneracy is lifted from
the system, we evaluate (19) at near-degeneracy, namely when the parametera2 + b2 is
approximately 1. From the expressions ofτ (1)12 given above it is apparent thatτ ′12 is zero
and analytic at and near the degeneracy. Thus, we obtain

χ ± (φ) ≈ exp[−i
∫ φ

0
dφ′τ (1)12 (φ

′)± iφ
√
(w)]q0. (23)

For any choice of the energyE orw such that(
√
w)q0 is an integer,independentlyof whether

the system has or has not a degeneracy,χ(φ)has the right property of multi- or single valuedness
(needed to match the analogous property of the electronic part). This arises from the integration
of the result (19) (e.g. using formula 3.613 in [29]), between 0 and 2π to give

q0

∫
dφ′τ (1)12 (φ

′) = π for
√
(a2 + b2) < q0 (24)

= 0 for
√
(a2 + b2) > q0. (24′)

Thus, the energy does not change discontinuously as the circleq = q0 along which the electron
moves crosses the point of degeneracy. Clearly the nuclear factors compensate for the sign
change in the electronic wave-function, as required, and this occurs for any value of the energy
E of the electron–nuclear system. This ensures that, in aGedankenexperimentwhere the
inequality in (24) passes smoothly into that in (24′) by a continuous change in the parameters
(k, a or b) of the Hamiltonian, the total wave-function maintains the correct single valuedness,
without a jump in the energy.

As an alternative to the preceding method, for solving the coupled nuclear equations (3)
and (4), it might be tried to uncouple them by neglecting the last two terms (those involving
τ12). This approximation is termed the ‘single-surface’ approach in [27]. In equation (11) for
Q, it is equivalent to the neglect of the middle two terms. ThenQ is, for a general value ofE,
a continuous function of the parametersk, a andb (enteringw through the adiabatic potential
V1). As a consequence, to perform the compensating switch in the nuclear phase angle, the
energy must change discontinuously as the potential changes smoothly. This is an unsavoury
situation and unlike the magnetic case [25] it is difficult to envisage an energy-balancing
mechanism that can justify it. The source of the difficulty underlying this approach is thatτ12

is singular atq = 0, and therefore cannot be neglected. Our approach, while approximative
in other respects (namely by the neglect ofδ in equation (8)), keepsτ12 properly.

3.2. A spin–orbit coupled doublet

While the previous example was relatively simple in thatτ
(1)
12 was essentially the derivative of

the transformation angle (≈φ/2) divided byq, in the following example, due to Stone [18], this
is no longer so. The spin–orbit coupling between the orbital doublet, whose strength may be
positive or negative and of any magnitude, causes the adiabatic electronic wave-function to be
complex. The electronic phase change (the Berry phase) round the closed loopq = constant
in the nuclear parameter plane is according to [18]

� = π [1− γ /√(k2q2 + γ 2)] (25)

and differs from a simple sign change. The question to be explored is whether the phase change
in the nuclear part (not treated in [18], or elsewhere) compensates the electronic phase change
� and whether it does so continuously as the parameters of the Hamiltonian (e.g.k, γ ) are
varied.
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Keeping as far as possible to Stone’s notation, but retaining the column vector
representation for the electronic base, we write for the electronic wave function components
perturbed by the spin–orbit interaction

ψ ′1 = ζ1 =
(
cC + isS
cS − isC

)
(26)

ψ ′2 = ζ2 =
(
cS + isC
−cC + isS

)
(27)

where we have introduced the abbreviated notations:

s ≡ sinα c ≡ cosα (28)

with

tan 2α ≡ γ /kq (29)

S ≡ sin(φ/2) C ≡ cos(φ/2). (30)

Further electronic wave-functions91(φ) and92(φ) were introduced in [18], that have the
property of parallel transport, namely

〈9(φ)|(∂/∂φ)9(φ)〉 = 0

and that differ fromψ ′1 andψ ′2 by phase factors. A simple calculation shows that

91(φ) = ρ−1/2ψ ′1 (31)

and

92(φ) = ρ1/2ψ ′2 (32)

where the phase factorρ introduced earlier in (5) is given by

ρ = exp(iφ sin 2α) (sin 2α = γ /√(k2q2 + γ 2)) (33)

= (ρ−1)∗.

It is now straightforward to calculate the quantities entering the nuclear equations:

τ
(1)
12 = 〈91|∇|92〉 = ρk/2√(k2q2 + γ 2) = −τ (1)∗21 (34)

τ
(2)
12 = 〈91|∇2|92〉 = iργ k/[2q(k2q2 + γ 2)] = −τ (2)∗21 . (35)

Moreover,

τ
(1)
11 = τ (1)22 = 0 (36)

τ
(2)
11 = τ (2)22 = −k2/(k2q2 + γ 2). (37)

We can now substitute these quantities into the solution of the nuclear equation for circular
motion in the (q, φ) plane (equations (10)–(12)). The angle independence of these quantities
makes the angular integration in the exponent in (10) trivial and one obtains the following
nuclear function:

χ = exp iφ/2{kq/√(k2q2 + γ 2) +
√

[8Mq2(E − V1) + γ kq/(2(k2q2 + γ 2))]}. (38)

(There are further solutions with different signs in the exponent. The following considerations
are unaffected by these differences.)

We have noted above in equation (25) that the phase of the electronic component changes
in a cycle (φ = 2π ) by the angle

� = π [1− γ /√(k2q2 + γ 2)]. (39)
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The choice of an appropriate energyE introduces a compensatory change in the nuclear factor
and ensures the one-valuedness of the total wave-function. For our purposes it is essential to
note that, as either the spin–orbit coupling strengthγ is continuously varied (e.g. by a suitably
oriented application of pressure on the system), or the parameterk is altered, the energyE will
adjust continuously, as it should.

The situation is quite different in the ‘one-surface’ approximation, when we investigate
how the energy adjusts in the limits (already considered by Stone [18]) of very smallγ andq.
In this approximation one neglects in (3) terms inχ2 or equivalently in (11) the second and
third term containingτ12. Then one obtains

Q = √(τ (2)11 +w).

When we substitute this in (10), using (37) we obtain

χ(2π) = exp{i2π√[2M(E − V1)q
2 − k2q2/(k2q2 + γ 2)]}. (40)

Here the energyE is to be so chosen as to compensate the multivaluedness of the electronic
phase in (39). Evidently this can always be done. However, let us examine the exponent for
the case where first|γ | is arbitrarily small and then|kq| decreases (by shrinking the orbit) to
|γ | and below it. Clearly, for a minute variation of the parameterq, the negative term will
make a finite jump between−1 and 0. Then alsoq2E will make a finite jump (to maintain the
single-valuedness of the total wave-function). But, sinceq itself is arbitrarily small, this means
thatE (which is an observable) makes an infinitely large jump under a continuous change of
the Hamiltonian.

We conclude from the examples 3.1 and 3.2, that the single-surface approximation fails
in describing the topological properties of the combined electron–nuclear system, precisely
where the treatment of [12, 27, 28] gives consistent answers.

4. Discussion

We have shown, by detailed study of the cases above, that consistency in the single valuedness
of the total wave-function can be achieved by tracing the phase near the degeneracy. This idea is
of course germane to the works of Longuet-Higgins and Stone for the electronic wave-function
component.

The approach was tested on a model which possesses a conical intersection with
resemblance to anH–H2 scattering configuration [28]. A numerical study using our
(approximative) approach, namely that based on our equation (8) withδ = 0, has given
probabilities for the reactive state-to-state transitions that are very close to the exact ones (our
equations (3) and (4)). (e.g. with a collision energy of 2 eV the 0→ 1 transition probabilities
are 0.082 and 0.083 in the two methods respectively, table III in [28]. For comparison, the
lower potential at its lowest is 5 eV below the upper one and the intersection lies at 3 eV.)
Also the selection rule for 0→ 1 as an allowed transition by both methods contrasts with the
forbiddenness in the ‘single-surface’ method. Likewise (as seen in table IV of [28]), inelastic
scattering probabilities computed with the approximative approach gave good quantitative
agreement with exact computations, unlike the ‘single-surface’ method. (For the 0→ 0
transition the values are 0.029, 0.030 and 0.185, respectively.) In a different paper, the cyclic
integral ofτ (1)12 calculated for the triatomic molecule CH2 was found to depend on the distance
from the singularity, approachingπ with decreasing distance [3]. This supports our taking
τ
(1)
12 as a derivative coupling, as in equation (34), near the intersection point.

At the same time, the effect of neglectingδ away from the intersection needs to be
investigated. In a perturbational approach the first-order perturbation correction to the energy
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raises the energy of the upper componentχ2 by just the right amount. The corresponding
(first-order) correction to the wave-function

δχ2 =
∑
〈χr |δ〉χr/(E − Er) (41)

(in which the summation runs over all solutions of (3) and (4)), exceptingχ2) vanishes due to
the orthogonality of exp(irφ) for integerr. Higher order corrections and the convergence of
the corrections need to be investigated. It is clear, however, that the topological properties of all
terms are the same as those ofχ1 orχ2. Thus it can be claimed that the method of neglectingδ

is appropriate for establishing the topological features of the wave-function, while incomplete
as regards to the functional form of the solution (e.g. when the dependence on the radial nuclear
coordinateq is reinstated).

In the issue of degeneracy, one source of the difficulty is that the geometrical phase angle
relates to (and is conventionally expressed in terms of) a single wave-function [1], so that
a partner wave-function, with which the former might be degenerate, seems uncalled for.
However, as noted on p 901 of [15], ‘Within a finite system, two alternative descriptions
[in terms of the squared modulus of the wave-function, or in terms of its phase] are equivalent’
and, moreover, we have elsewhere given integral relations that show that when the geometrical
phase (more precisely, the ‘connection’) varies with time, so does the squared modulus (and
vice versa) [30]. Now, the change of the latter implies the presence of at least one further
wave-function component (which takes up, or supplies, the change in the modulus so that the
norm is time independent, e.g. 1).Thus, one expects that forall finite systems, a degeneracy
with some of these components will occur somewhere in the relevant portion of the parameter
space. (As an example, Resta invokes other wave-function components to prove the gauge
invariance of the geometrical phase, equation (44) in [15].)
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